Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 131(1): 171-184, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35390125

RESUMO

BACKGROUND AND AIMS: Hybridization is a common and important force in plant evolution. One of its outcomes is introgression - the transfer of small genomic regions from one taxon to another by hybridization and repeated backcrossing. This process is believed to be common in glacial refugia, where range expansions and contractions can lead to cycles of sympatry and isolation, creating conditions for extensive hybridization and introgression. Polyploidization is another genome-wide process with a major influence on plant evolution. Both hybridization and polyploidization can have complex effects on plant evolution. However, these effects are often difficult to understand in recently evolved species complexes. METHODS: We combined flow cytometry, analyses of transcriptomic sequences and pollen tube growth assays to investigate the consequences of polyploidization, hybridization and introgression on the recent evolution of several Erysimum (Brassicaceae) species from the South of the Iberian Peninsula, a well-known glacial refugium. This species complex differentiated in the last 2 million years, and its evolution has been hypothesized to be determined mainly by polyploidization, interspecific hybridization and introgression. KEY RESULTS: Our results support a scenario of widespread hybridization involving both extant and 'ghost' taxa. Several taxa studied here, most notably those with purple corollas, are polyploids, probably of allopolyploid origin. Moreover, hybridization in this group might be an ongoing phenomenon, as pre-zygotic barriers appeared weak in many cases. CONCLUSIONS: The evolution of Erysimum spp. has been determined by hybridization to a large extent. Species with purple (polyploids) and yellow flowers (mostly diploid) exhibit a strong signature of introgression in their genomes, indicating that hybridization occurred regardless of colour and across ploidy levels. Although the adaptive value of such genomic exchanges remains unclear, our results demonstrate the significance of hybridization for plant diversification, which should be taken into account when studying plant evolution.


Assuntos
Brassicaceae , Erysimum , Hibridização Genética , Poliploidia , Europa (Continente) , Filogenia
2.
Sci Rep ; 8(1): 17404, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30479362

RESUMO

Chloroplast genomes (cp genomes) are widely used in comparative genomics, population genetics, and phylogenetic studies. Obtaining chloroplast genomes from RNA-Seq data seems feasible due to the almost full transcription of cpDNA. However, the reliability of chloroplast genomes assembled from RNA-Seq instead of genomic DNA libraries remains to be thoroughly verified. In this study, we assembled chloroplast genomes for three Erysimum (Brassicaceae) species from three RNA-Seq replicas and from one genomic library of each species, using a streamlined bioinformatics protocol. We compared these assembled genomes, confirming that assembled cp genomes from RNA-Seq data were highly similar to each other and to those from genomic libraries in terms of overall structure, size, and composition. Although post-transcriptional modifications, such as RNA-editing, may introduce variations in the RNA-seq data, the assembly of cp genomes from RNA-seq appeared to be reliable. Moreover, RNA-Seq assembly was less sensitive to sources of error such as the recovery of nuclear plastid DNAs (NUPTs). Although some precautions should be taken when producing reference genomes in non-model plants, we conclude that assembling cp genomes from RNA-Seq data is a fast, accurate, and reliable strategy.


Assuntos
Genoma de Cloroplastos , Análise de Sequência de RNA/métodos , Erysimum/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA/normas
3.
Glob Chang Biol ; 24(9): 4069-4083, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29768696

RESUMO

Climatic dryness imposes limitations on vascular plant growth by reducing stomatal conductance, thereby decreasing CO2 uptake and transpiration. Given that transpiration-driven water flow is required for nutrient uptake, climatic stress-induced nutrient deficit could be a key mechanism for decreased plant performance under prolonged drought. We propose the existence of an "isohydric trap," a dryness-induced detrimental feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric species. We tested this framework in a common garden experiment with 840 individuals of four ecologically contrasting European pines (Pinus halepensis, P. nigra, P. sylvestris, and P. uncinata) at a site with high temperature and low soil water availability. We measured growth, survival, photochemical efficiency, stem water potentials, leaf isotopic composition (δ13 C, δ18 O), and nutrient concentrations (C, N, P, K, Zn, Cu). After 2 years, the Mediterranean species Pinus halepensis showed lower δ18 O and higher δ13 C values than the other species, indicating higher time-integrated transpiration and water-use efficiency (WUE), along with lower predawn and midday water potentials, higher photochemical efficiency, higher leaf P, and K concentrations, more balanced N:P and N:K ratios, and much greater dry-biomass (up to 63-fold) and survival (100%). Conversely, the more mesic mountain pine species showed higher leaf δ18 O and lower δ13 C, indicating lower transpiration and WUE, higher water potentials, severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical efficiency, growth, and survival. These results support our hypothesis that vascular plant species with tight stomatal regulation of transpiration can become trapped in a feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental impacts of climatic dryness on performance. This overlooked feedback mechanism may hamper the ability of isohydric species to respond to ongoing global change, by aggravating the interactive impacts of stoichiometric imbalance and water stress caused by anthropogenic N deposition and hotter droughts, respectively.


Assuntos
Mudança Climática , Pinus/fisiologia , Estômatos de Plantas/fisiologia , Água/metabolismo , Longevidade , Nutrientes/metabolismo , Pinus/crescimento & desenvolvimento , Espanha
4.
New Phytol ; 215(1): 469-478, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28382619

RESUMO

Because establishing a new population often depends critically on finding mates, individuals capable of uniparental reproduction may have a colonization advantage. Accordingly, there should be an over-representation of colonizing species in which individuals can reproduce without a mate, particularly in isolated locales such as oceanic islands. Despite the intuitive appeal of this colonization filter hypothesis (known as Baker's law), more than six decades of analyses have yielded mixed findings. We assembled a dataset of island and mainland plant breeding systems, focusing on the presence or absence of self-incompatibility. Because this trait enforces outcrossing and is unlikely to re-evolve on short timescales if it is lost, breeding system is especially likely to reflect the colonization filter. We found significantly more self-compatible species on islands than mainlands across a sample of > 1500 species from three widely distributed flowering plant families (Asteraceae, Brassicaceae and Solanaceae). Overall, 66% of island species were self-compatible, compared with 41% of mainland species. Our results demonstrate that the presence or absence of self-incompatibility has strong explanatory power for plant geographical patterns. Island floras around the world thus reflect the role of a key reproductive trait in filtering potential colonizing species in these three plant families.


Assuntos
Asteraceae/fisiologia , Brassicaceae/fisiologia , Reprodução Assexuada , Solanaceae/fisiologia , Ilhas
5.
New Phytol ; 214(4): 1527-1536, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28262955

RESUMO

Seed dormancy is expected to provide ecological advantages by adjusting germination to the favorable growth period. However, many species produce nondormant seeds, particularly in wet tropical forests, a biogeographic pattern that is not well accounted for in current models. We hypothesized that the global distribution of dormant seeds derives from their adaptive value in predictably fluctuating (i.e. seasonal) environments. However, the advantage conferred by dormancy might ultimately depend on other seed attributes, particularly size. This general model was tested within a phylogenetically informed framework using a data set comprising > 216 000 world-wide observations of Fabaceae, spanning three orders of magnitude in seed size and including both dormant and nondormant seeds. Our results confirmed our hypothesis: nondormant seeds can only evolve in climates with long growing seasons and/or in lineages that produce larger seeds. Conversely, dormancy should be evolutionarily stable in temperate lineages with small seeds. When the favorable season is fleeting, seed dormancy is the only adaptive strategy. Based on these results, we predict that, within a given lineage, taxa producing larger, nondormant seeds will necessarily predominate in aseasonal environments, while plants bearing small, dormant seeds will be dominant under short growing seasons.


Assuntos
Fabaceae/fisiologia , Dormência de Plantas/fisiologia , Sementes/fisiologia , Evolução Biológica , Germinação , Filogeografia , Estações do Ano , Sementes/anatomia & histologia
6.
PLoS Comput Biol ; 12(10): e1005139, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27736874

RESUMO

Evolutionary and ecosystem dynamics are often treated as different processes -operating at separate timescales- even if evidence reveals that rapid evolutionary changes can feed back into ecological interactions. A recent long-term field experiment has explicitly shown that communities of competing plant species can experience very fast phenotypic diversification, and that this gives rise to enhanced complementarity in resource exploitation and to enlarged ecosystem-level productivity. Here, we build on progress made in recent years in the integration of eco-evolutionary dynamics, and present a computational approach aimed at describing these empirical findings in detail. In particular we model a community of organisms of different but similar species evolving in time through mechanisms of birth, competition, sexual reproduction, descent with modification, and death. Based on simple rules, this model provides a rationalization for the emergence of rapid phenotypic diversification in species-rich communities. Furthermore, it also leads to non-trivial predictions about long-term phenotypic change and ecological interactions. Our results illustrate that the presence of highly specialized, non-competing species leads to very stable communities and reveals that phenotypically equivalent species occupying the same niche may emerge and coexist for very long times. Thus, the framework presented here provides a simple approach -complementing existing theories, but specifically devised to account for the specificities of the recent empirical findings for plant communities- to explain the collective emergence of diversification at a community level, and paves the way to further scrutinize the intimate entanglement of ecological and evolutionary processes, especially in species-rich communities.


Assuntos
Evolução Biológica , Ecossistema , Especiação Genética , Variação Genética/genética , Modelos Genéticos , Plantas/genética , Simulação por Computador , Genética Populacional , Fenótipo , Especificidade da Espécie
7.
Ann Bot ; 117(4): 643-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26944783

RESUMO

BACKGROUND: The spatial arrangement and expression of foliar syndromes within tree crowns can reflect the coupling between crown form and function in a given environment. Isolated trees subjected to high irradiance and concomitant stress may adjust leaf phenotypes to cope with environmental gradients that are heterogeneous in space and time within the tree crown. The distinct expression of leaf phenotypes among crown positions could lead to complementary patterns in light interception at the crown scale. METHODS: We quantified eight light-related leaf traits across 12 crown positions of ten isolated Olea europaea trees in the field. Specifically, we investigated whether the phenotypic expression of foliar traits differed among crown sectors and layers and five periods of the day from sunrise to sunset. We investigated the consequences in terms of the exposed area of the leaves at the tree scale during a single day. KEY RESULTS: All traits differed among crown positions except the length-to-width ratio of the leaves. We found a strong complementarity in the patterns of the potential exposed area of the leaves among day periods as a result of a non-random distribution of leaf angles across the crown. Leaf exposure at the outer layer was below 60 % of the displayed surface, reaching maximum interception during morning periods. Daily interception increased towards the inner layer, achieving consecutive maximization from east to west positions within the crown, matching the sun's trajectory. CONCLUSIONS: The expression of leaf traits within isolated trees of O. europaea varies continuously through the crown in a gradient of leaf morphotypes and leaf angles depending on the exposure and location of individual leaves. The distribution of light-related traits within the crown and the complementarity in the potential exposure patterns of the leaves during the day challenges the assumption of low trait variability within individuals.


Assuntos
Luz , Olea/fisiologia , Olea/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Árvores/fisiologia , Árvores/efeitos da radiação , Modelos Lineares , Característica Quantitativa Herdável , Fatores de Tempo
9.
New Phytol ; 203(1): 300-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24684268

RESUMO

Seed dormancy, by controlling the timing of germination, can strongly affect plant survival. The kind of seed dormancy, therefore, can influence both population and species-level processes such as colonization, adaptation, speciation, and extinction. We used a dataset comprising over 14,000 taxa in 318 families across the seed plants to test hypotheses on the evolution of different kinds of seed dormancy and their association with lineage diversification. We found morphophysiological dormancy to be the most likely ancestral state of seed plants, suggesting that physiologically regulated dormancy in response to environmental cues was present at the origin of seed plants. Additionally, we found that physiological dormancy (PD), once disassociated from morphological dormancy, acted as an 'evolutionary hub' from which other dormancy classes evolved, and that it was associated with higher rates of lineage diversification via higher speciation rates. The environmental sensitivity provided by dormancy in general, and by PD in particular, appears to be a key trait in the diversification of seed plants.


Assuntos
Evolução Biológica , Dormência de Plantas , Plantas/genética , Sementes/fisiologia , Meio Ambiente , Filogenia , Sementes/genética
10.
Proc Natl Acad Sci U S A ; 111(17): 6139-46, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24757054

RESUMO

It is difficult to overstate the cultural and biological impacts that the domestication of plants and animals has had on our species. Fundamental questions regarding where, when, and how many times domestication took place have been of primary interest within a wide range of academic disciplines. Within the last two decades, the advent of new archaeological and genetic techniques has revolutionized our understanding of the pattern and process of domestication and agricultural origins that led to our modern way of life. In the spring of 2011, 25 scholars with a central interest in domestication representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and archaeology met at the National Evolutionary Synthesis Center to discuss recent domestication research progress and identify challenges for the future. In this introduction to the resulting Special Feature, we present the state of the art in the field by discussing what is known about the spatial and temporal patterns of domestication, and controversies surrounding the speed, intentionality, and evolutionary aspects of the domestication process. We then highlight three key challenges for future research. We conclude by arguing that although recent progress has been impressive, the next decade will yield even more substantial insights not only into how domestication took place, but also when and where it did, and where and why it did not.


Assuntos
Animais Domésticos/genética , Produtos Agrícolas/genética , Animais , Evolução Biológica , Meio Ambiente , Geografia , Análise Espaço-Temporal
11.
Proc Natl Acad Sci U S A ; 111(17): 6159-64, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24753572

RESUMO

The domestication of plants and animals marks one of the most significant transitions in human, and indeed global, history. Traditionally, study of the domestication process was the exclusive domain of archaeologists and agricultural scientists; today it is an increasingly multidisciplinary enterprise that has come to involve the skills of evolutionary biologists and geneticists. Although the application of new information sources and methodologies has dramatically transformed our ability to study and understand domestication, it has also generated increasingly large and complex datasets, the interpretation of which is not straightforward. In particular, challenges of equifinality, evolutionary variance, and emergence of unexpected or counter-intuitive patterns all face researchers attempting to infer past processes directly from patterns in data. We argue that explicit modeling approaches, drawing upon emerging methodologies in statistics and population genetics, provide a powerful means of addressing these limitations. Modeling also offers an approach to analyzing datasets that avoids conclusions steered by implicit biases, and makes possible the formal integration of different data types. Here we outline some of the modeling approaches most relevant to current problems in domestication research, and demonstrate the ways in which simulation modeling is beginning to reshape our understanding of the domestication process.


Assuntos
Animais Domésticos/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Narração , Animais , Humanos , Hibridização Genética , Modelos Biológicos
12.
Am J Bot ; 100(5): 916-29, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23629845

RESUMO

PREMISE OF THE STUDY: We sought novel evolutionary insights for the highly diverse Saxifragales by constructing a large phylogenetic tree encompassing 36.8% of the species-level biodiversity. • METHODS: We built a phylogenetic tree for 909 species of Saxifragales and used this hypothesis to examine character evolution for annual or perennial habit, woody or herbaceous habit, ovary position, petal number, carpel number, and stamen to petal ratio. We employed likelihood approaches to investigate the effect of habit and life history on speciation and extinction within this clade. • KEY RESULTS: Two major shifts occurred from a woody ancestor to the herbaceous habit, with multiple secondary changes from herbaceous to woody. Transitions among superior, subinferior, and inferior ovaries appear equiprobable. A major increase in petal number is correlated with a large increase in carpel number; these increases have co-occurred multiple times in Crassulaceae. Perennial or woody lineages have higher rates of speciation than annual or herbaceous ones, but higher probabilities of extinction offset these differences. Hence, net diversification rates are highest for annual, herbaceous lineages and lowest for woody perennials. The shift from annuality to perenniality in herbaceous taxa is frequent. Conversely, woody perennial lineages to woody annual transitions are infrequent; if they occur, the woody annual state is left immediately. • CONCLUSIONS: The large tree provides new insights into character evolution that are not obvious with smaller trees. Our results indicate that in some cases the evolution of angiosperms might be conditioned by constraints that have been so far overlooked.


Assuntos
Evolução Biológica , Rosales/genética , Teorema de Bayes , Extinção Biológica , Flores , Modelos Genéticos , Especificidade da Espécie
13.
PLoS One ; 6(8): e23004, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829680

RESUMO

BACKGROUND: In the Peruvian Coastal Desert, an archipelago of fog oases, locally called lomas, are centers of biodiversity and of past human activity. Fog interception by a tree canopy, dominated by the legume tree tara (Caesalpinia spinosa), enables the occurrence in the Atiquipa lomas (southern Peru) of an environmental island with a diverse flora and high productivity. Although this forest provides essential services to the local population, it has suffered 90% anthropogenic reduction in area. Restoration efforts are now getting under way, including discussion as to the most appropriate reference ecosystem to use. METHODOLOGY/PRINCIPAL FINDINGS: Genetic diversity of tara was studied in the Atiquipa population and over a wide geographical and ecological range. Neither exclusive plastid haplotypes to loma formations nor clear geographical structuring of the genetic diversity was found. Photosynthetic performance and growth of seedlings naturally recruited in remnant patches of loma forest were compared with those of seedlings recruited or planted in the adjacent deforested area. Despite the greater water and nitrogen availability under tree canopy, growth of forest seedlings did not differ from that of those recruited into the deforested area, and was lower than that of planted seedlings. Tara seedlings exhibited tight stomatal control of photosynthesis, and a structural photoprotection by leaflet closure. These drought-avoiding mechanisms did not optimize seedling performance under the conditions produced by forest interception of fog moisture. CONCLUSIONS/SIGNIFICANCE: Both weak geographic partitioning of genetic variation and lack of physiological specialization of seedlings to the forest water regime strongly suggest that tara was introduced to lomas by humans. Therefore, the most diverse fragment of lomas is the result of landscape management and resource use by pre-Columbian cultures. We argue that an appropriate reference ecosystem for ecological restoration of lomas should include sustainable agroforestry practices that emulate the outcomes of ancient uses.


Assuntos
Conscientização , Características Culturais , Árvores , Biodiversidade , Humanos , Peru , Fotossíntese
14.
Photosynth Res ; 101(1): 77-88, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19593662

RESUMO

Current methods for the study of pigments involve freezing in liquid nitrogen and storage at -80 degrees C or lyophilization until HPLC analysis. These requirements greatly restrict ecophysiological research in remote areas where such resources are hardly available. We aimed to overcome such limitations by developing several techniques not requiring freezing or lyophilization. Two species with contrasting foliar characteristics (Olea europaea and Taraxacum officinale) were chosen. Seven preservation methods were designed, optimized and tested in a field trial. These protocols were compared with a control immediately frozen after collection. Pigments and tocopherols were analysed by HPLC. Main artefacts were chlorophyll epimerization or phaeophytinization, carotenoid isomerization, altered de-epoxidation index and tocopherol degradation. Among all methods, sample desiccation in silica gel provides robust samples (pigment composition was unaffected by storage time or temperature) and almost unaltered pigment profiles, except for a shift in epoxidation state. Although liquid nitrogen freezing and subsequent lyophilization or freezer storage were preferred, when these facilities are either not available or not suitable for long-distance transport, desiccation with silica gel, passive extraction in acetone and/or storage of fresh samples in water vapour saturated atmospheres enable a complete pigment characterization. Silica gel is advisable for long-term sample conservation.


Assuntos
Fotossíntese/fisiologia , Plantas/química , Preservação Biológica/métodos , Tocoferóis/análise , Cromatografia Líquida de Alta Pressão , Liofilização , Xantofilas/análise
15.
Ann Bot ; 104(1): 143-60, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19465750

RESUMO

BACKGROUND AND AIMS: The genus Olea (Oleaceae) includes approx. 40 taxa of evergreen shrubs and trees classified in three subgenera, Olea, Paniculatae and Tetrapilus, the first of which has two sections (Olea and Ligustroides). Olive trees (the O. europaea complex) have been the subject of intensive research, whereas little is known about the phylogenetic relationships among the other species. To clarify the biogeographical history of this group, a molecular analysis of Olea and related genera of Oleaceae is thus necessary. METHODS: A phylogeny was built of Olea and related genera based on sequences of the nuclear ribosomal internal transcribed spacer-1 and four plastid regions. Lineage divergence and the evolution of abaxial peltate scales, the latter character linked to drought adaptation, were dated using a Bayesian method. KEY RESULTS: Olea is polyphyletic, with O. ambrensis and subgenus Tetrapilus not sharing a most recent common ancestor with the main Olea clade. Partial incongruence between nuclear and plastid phylogenetic reconstructions suggests a reticulation process in the evolution of subgenus Olea. Estimates of divergence times for major groups of Olea during the Tertiary were obtained. CONCLUSIONS: This study indicates the necessity of revising current taxonomic boundaries in Olea. The results also suggest that main lines of evolution were promoted by major Tertiary climatic shifts: (1) the split between subgenera Olea and Paniculatae appears to have taken place at the Miocene-Oligocene boundary; (2) the separation of sections Ligustroides and Olea may have occurred during the Early Miocene following the Mi-1 glaciation; and (3) the diversification within these sections (and the origin of dense abaxial indumentum in section Olea) was concomitant with the aridification of Africa in the Late Miocene.


Assuntos
Clima , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Oleaceae/classificação , Oleaceae/genética , Filogenia , Plastídeos/genética , Evolução Molecular , Microscopia Eletrônica de Varredura , Oleaceae/ultraestrutura , Análise de Sequência de DNA
16.
Am J Bot ; 96(8): 1454-61, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21628292

RESUMO

Woody plants, as sessile and long-lived organisms, are expected to have effective mechanisms for dealing with recurrent environmental stresses. In the present study, we hypothesized that phenotypic plasticity (the ability to express alternative phenotypes) and integration (covariation among functionally related traits) are elicited in plants under stressful wind speed conditions. We investigated the within-crown variation of nine vegetative traits of a tree species (Olea europaea subsp. guanchica) in six populations that represented a gradient of wind speed exposures. Wind-exposed twigs in outer-canopy layers had smaller leaves; thinner, lighter, and shorter internodes; and a larger internode cross-sectional area to leaf area ratio. Comparison between field and greenhouse trials revealed that field differences among populations were mediated by phenotypic plasticity. Outer-canopy twigs expressed plastic responses in populations exposed to high wind speeds, whereas inner-canopy twigs displayed high phenotypic convergence among populations. In addition, phenotypic integration increased with wind exposure (outer canopy > inner canopy > greenhouse) and was consequently affected by canopy openness. We conclude that exposure to wind above a certain speed threshold in this woody species elicits a plastic response that is associated with increased integration among traits and involves mechanical and hydraulic rearrangements in more exposed parts of the trees.

17.
Ann Bot ; 100(2): 325-34, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17576660

RESUMO

BACKGROUND AND AIMS: Quercus coccifera, as a long-lived sprouter, responds plastically to environmental variation. In this study, the role of foliar plasticity as a mechanism of habitat selection and modification within the canopy and across contrasted habitats was characterized. An examination was made of the differential contribution of inner and outer canopy layers to the crown plasticity expressed in the field by adult individuals and its dependence on environmental and genetic factors. METHODS: Within-crown variation in eight foliar traits was examined in nine populations dominated by Q. coccifera. The difference between mean trait values at the inner and outer canopy layers was used as a proxy for crown plasticity to light. Correlations between geographic distances, environmental differences (climatic and edaphic) and phenotypic divergence (means and plasticities) were assessed by partial Mantel tests. A subset of field measurements was compared with data from a previous common garden experiment. KEY RESULTS: Phenotypic adjustment of sun leaves contributed significantly to the field variation in crown plasticity. Plasticity in leaf angle, lobation, xanthophyll cycle pigments and beta-carotene content was expressed in sun and shade leaves concurrently and in opposite directions. Phenotypic plasticity was more strongly correlated with environmental variation than mean trait values. Populations of taller plants with larger, thinner (higher specific leaf area) and less spiny leaves exhibited greater plasticity. In these populations, the midday light environment was more uniform at the inner than at the outer canopy layers. Field and common garden data ranked populations in the same order of plasticity. CONCLUSIONS: The expression of leaf plasticity resulted in a phenotypic differentiation that suggests a mechanism of habitat selection through division of labour across canopy layers. Signs of plasticity-mediated habitat modification were found only in the most plastic populations. Intracanopy plasticity was sensitive to environmental variation but also exhibited a strong genetic component.


Assuntos
Aclimatação/fisiologia , Ecossistema , Fenótipo , Folhas de Planta/fisiologia , Quercus/fisiologia , Geografia , Pigmentos Biológicos/metabolismo , Folhas de Planta/anatomia & histologia , Portugal , Quercus/anatomia & histologia , Quercus/genética , Espanha
18.
Theor Appl Genet ; 113(4): 575-83, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16835765

RESUMO

Genetic structure and evolutionary patterns of the wild olive tree (Olea europaea L.) were investigated with AFLP fingerprinting data at three geographic levels: (a) phylogenetic relationships of the six currently recognized subspecies in Eurasia and Africa; (b) lineage identification in subsp. europaea of the Mediterranean basin; and (c) phylogeography in the western Mediterranean. Two statistical approaches (Bayesian inference and analysis of molecular variance) were used to analyse the AFLP fingerprints. To determine the congruency and transferability of results across studies previous RAPD and ISSR data were analysed in a similar manner. Comparisons proved that qualitative results were mostly congruent but quantitative values differed, depending on the method of analysis. Neighbour-Joining analysis of AFLP phenotypes supported current classification of subspecies. At a Mediterranean scale no clear cut phylogeographic pattern was recovered, likely due to extensive gene flow between populations of subsp. europaea. Gene flow estimates calculated with conventional F-statistics showed that reproductive barriers separated neither populations nor lineages of O. europaea. Genetic divergence between eastern and western parts of the Mediterranean basin was observed only when geographical and population information were incorporated into the analyses through hierarchical analysis of molecular variance (AMOVA). Within the western Mediterranean, the highest genetic diversity was found in two regions: on both sides of the Strait of Gibraltar and in the Balearic archipelago. Additionally, long-lasting isolation of the northern-most populations of the Iberian Peninsula appeared to be responsible for a significant divergence.


Assuntos
Fluxo Gênico , Genes de Plantas , Geografia , Olea/classificação , Filogenia , Impressões Digitais de DNA , Marcadores Genéticos , Região do Mediterrâneo , Olea/genética , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...